optimization of passive tractor cabin suspension parameters using particle swarm optimization algorithm

نویسندگان

سامان آبدانان مهدی‏زاده

استادیار دانشکدۀ کشاورزی دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

چکیده

in this paper a survey to determine the spring and damper settings of itm285 tractor’s cabin which ensured optimal ride comfort of tractor operator was conducted. analysis has been done in terms of root mean square acceleration response (rmsar) in one-third-octave band and international standard organization (iso). optimization was performed using particle swarm optimization (pso) method on a 2 dof modeled in matlab software for frequencies ranging from 1 to 10 hz. obtained results for c1, c2, k1 and k2 were 943 (ns/m), 850 (ns/m), 3927 (n/m)  and 26199 (n/m), respectively. modeling tractor cabin using optimized parameters according to iso 2631-1985, showed 16.7, 10.1, 11.5 and 12.2 % reduction in rise time, peak time, settling time and max. overshoot of tractor cabin displacement. therefore, transmitted vibration was reduced and also improve the ride comfort of the tractor operator.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An approach to Improve Particle Swarm Optimization Algorithm Using CUDA

The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...

متن کامل

OPTIMIZATION OF PLACEMENTVOLTAGE OF PIEZOELECTRIC ACTUATORS ON AN L-SHAPE BEAM USING PARTICLE SWARM OPTIMIZATION ALGORITHM

In this paper, controlling the location of the tip of an L-shape beam under gravity field is investigated. The beam is covered with piezoelectric patches. The gravity filed moves the tip of beam downward and the actuators with induced voltage move the tip to the previous location. to optimize the best location and voltages for actuators, the particle swarm optimization algorithm code is develop...

متن کامل

ISOGEOMETRIC STRUCTURAL SHAPE OPTIMIZATION USING PARTICLE SWARM ALGORITHM

One primary problem in shape optimization of structures is making a robust link between design model (geometric description) and analysis model. This paper investigates the potential of Isogeometric Analysis (IGA) for solving this problem. The generic framework of shape optimization of structures is presented based on Isogeometric analysis. By discretization of domain via NURBS functions, the a...

متن کامل

3D Optimization of Gear Train Layout Using Particle Swarm Optimization Algorithm

Optimization of the volume/weight in the gear train is of great importance for industries and researchers. In this paper, using the particle swarm optimization algorithm, a general gear train is optimized. The main idea is to optimize the volume/weight of the gearbox in 3 directions. To this end, the optimization process based on the PSO algorithm occurs along the height, length, and width of t...

متن کامل

Design of the Compact Ultra-Wideband (UWB) Antenna Bandwidth Optimization Using Particle Swarm Optimization Algorithm

In this paper a particle swarm optimization (PSO) algorithm is presented to design a compact stepped triangle shape antenna in order to obtain the proper UWB bandwidth as defined by FCC. By changing the various cavity dimensions of the antenna, data to develop PSO program in MATLAB is achieved. The results obtained from the PSO algorithm are applied to the antenna design to fine-tune the bandwi...

متن کامل

Cutting Parameters Optimization by Using Particle Swarm Optimization (PSO)

Cutting parameters play an essential role in the economics of machining. In this paper, particle swarm optimization (PSO), a novel optimization algorithm for cutting parameters optimization (CPO), was discussed comprehensively. First, the fundamental principle of PSO was introduced; then, the algorithm for PSO application in cutting parameters optimization was developed; thirdly, cutting experi...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
مهندسی بیوسیستم ایران

جلد ۴۶، شماره ۱، صفحات ۹-۱۷

کلمات کلیدی
[ ' i n t h i s p a p e r a s u r v e y t o d e t e r m i n e t h e s p r i n g a n d d a m p e r s e t t i n g s o f i t m 2 8 5 t r a c t o r s c a b i n w h i c h e n s u r e d o p t i m a l r i d e c o m f o r t o f t r a c t o r o p e r a t o r w a s c o n d u c t e d . a n a l y s i s h a s b e e n d o n e i n t e r m s o f r o o t m e a n s q u a r e a c c e l e r a t i o n r e s p o n s e ( r m s a r ) i n o n e ' , ' t h i r d ' , ' o c t a v e b a n d a n d i n t e r n a t i o n a l s t a n d a r d o r g a n i z a t i o n ( i s o ) . o p t i m i z a t i o n w a s p e r f o r m e d u s i n g p a r t i c l e s w a r m o p t i m i z a t i o n ( p s o ) m e t h o d o n a 2 d o f m o d e l e d i n m a t l a b s o f t w a r e f o r f r e q u e n c i e s r a n g i n g f r o m 1 t o 1 0 h z . o b t a i n e d r e s u l t s f o r c 1 ' , ' c 2 ' , ' k 1 a n d k 2 w e r e 9 4 3 ( n s / m ) ' , ' 8 5 0 ( n s / m ) ' , ' 3 9 2 7 ( n / m ) x a 0 a n d 2 6 1 9 9 ( n / m ) ' , ' r e s p e c t i v e l y . m o d e l i n g t r a c t o r c a b i n u s i n g o p t i m i z e d p a r a m e t e r s a c c o r d i n g t o i s o 2 6 3 1 ' , 1 9 8 5 , ' s h o w e d 1 6 . 7 ' , ' 1 0 . 1 ' , ' 1 1 . 5 a n d 1 2 . 2 % r e d u c t i o n i n r i s e t i m e ' , ' p e a k t i m e ' , ' s e t t l i n g t i m e a n d m a x . o v e r s h o o t o f t r a c t o r c a b i n d i s p l a c e m e n t . t h e r e f o r e ' , ' t r a n s m i t t e d v i b r a t i o n w a s r e d u c e d a n d a l s o i m p r o v e t h e r i d e c o m f o r t o f t h e t r a c t o r o p e r a t o r . ' ]

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023